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A long-standing problem in magnetic resonance imaging (MRI) is the noise-induced bias in the magni-
tude signals. This problem is particularly pressing in diffusion MRI at high diffusion-weighting. In this
paper, we present a three-stage scheme to solve this problem by transforming noisy nonCentral Chi sig-
nals to noisy Gaussian signals. A special case of nonCentral Chi distribution is the Rician distribution. In
general, the Gaussian-distributed signals are of interest rather than the Gaussian-derived (e.g., Rayleigh,
Rician, and nonCentral Chi) signals because the Gaussian-distributed signals are generally more amena-
ble to statistical treatment through the principle of least squares. Monte Carlo simulations were used to
validate the statistical properties of the proposed framework. This scheme opens up the possibility of
investigating the low signal regime (or high diffusion-weighting regime in the case of diffusion MRI) that
contains potentially important information about biophysical processes and structures of the brain.

Published by Elsevier Inc.
1. Introduction [18,19] is a special case of the nonCentral Chi distribution. It is also
Magnetic resonance imaging (MRI) [1] is a rapidly expanding
field and a widely used medical imaging modality—possessing
many noninvasive techniques capable of probing functional activ-
ities [2] and anatomical structures [3–10] of the brain in vivo. In
quantitative MRI, important parameters of biophysical relevance
are typically estimated from a collection of MR signals that are re-
lated to one another through a function of one or more experimen-
tally controlled variables. As ever higher sensitivity and specificity
to biophysical processes are achieved in MRI through improved
spatial or temporal resolution, the adverse effect of noise on the
overall accuracy of MRI-based quantitative findings also increases.

MR signals are complex numbers where the real and imaginary
components are independently Gaussian-distributed [11]. The
phase of the complex MRI signal is highly sensitive to many exper-
imental factors, e.g., see [11,12], and as such, the magnitude of the
complex MR signal is used instead in most quantitative studies.
Although several techniques have been proposed to correct the
phase error [12–15], the magnitude of the complex MR signal
(hereafter, magnitude MR signal) remains the most commonly used
measure in MRI. While the magnitude MR signal is not affected by
the phase error, it is not an optimal estimate of the underlying sig-
nal intensity when the signal-to-noise ratio is low [11] because it
follows a nonCentral Chi distribution [16,17] rather than a Gauss-
ian distribution. We should note that the Rician distribution
Inc.

).
well known that a Rician distribution [20] reduces to a Rayleigh
distribution when the underlying signal intensity is zero, and the
first moment of a Rayleigh distribution is usually known as the
‘‘noise floor” [21].

It is increasingly apparent that a resolution of the noise-induced
bias in the magnitude MR signals could make it possible to gain
further insights into the low signal regime that contains potentially
important information about intrinsic functional activity [22] and
tissue microstructure [3–9]. Although several correction methods
have been proposed [11,16,19,23,24] to address this problem,
these methods do not produce corrected data that are Gaussian-
distributed.

A simple means of assessing Gaussianity in the corrected data
when the noisy magnitude signals are drawn from the same distri-
bution, e.g., see Fig. 1, is to check if the corrected data follow a
Gaussian distribution. In practice, this type of data is rare. Rather,
we usually have MRI data that are drawn from a family of distribu-
tions all of which are characterized by different location parame-
ters (e.g., the location parameter of a Gaussian distribution is the
first moment and the location parameter of a nonCentral Chi distri-
bution will be pointed out later). For example, each of the noisy
magnitude signals of interest may be acquired under a slightly dif-
ferent experimentally controlled condition so that each noisy mag-
nitude signal is actually drawn from a slightly different
distribution. The proposed scheme is the first method capable of
obtaining corrected data that are distributed evenly in both the po-
sitive and negative axes when the signal-to-noise ratio is very close
to zero, which is a very important but simple criterion for testing
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Fig. 1. (A) A schematic diagram of the proposed scheme. (B) A schematic diagram of the two possible approaches that can be used to map nonCentral Chi signals to Gaussian
signals. The approach using the samples that are drawn from the same distribution (the bottom-left route) is based in part on [16] while the approach using the samples that
are drawn from different distributions (the top-right route) is the proposed scheme. The former route is ideal for simulation studies where p can be made much greater than
q, but it is not useful in practice because it is rare to have a large number of samples that are drawn from the same distribution. In fact, q is generally greater than p.
Nevertheless, as the sample size increases we expect the two approaches to produce the same final results, which are the sample mean and the sample SD that are obtained
from each column of transformed signals, g’s, above.
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the accuracy or lack thereof of a correction scheme. We should
point out that none of the previously published methods
[11,16,19,23,24] satisfies this criterion because these methods can-
not produce corrected data that have negative values.

In this work, we present a framework for making the magnitude
signals Gaussian-distributed. A simple example illustrates the idea
behind the proposed framework: suppose the noisy magnitude sig-
nals are drawn from a family of nonCentral Chi distributions all of
which are characterized by different location parameters but with
the same scale parameter. The proposed framework attempts to
transform the noisy magnitude signals such that each noisy trans-
formed signal may be thought of as if it were drawn from a Gauss-
ian distribution with a different mean but the same standard
deviation. Note that the location and scale parameters that charac-
terize a nonCentral Chi distribution are exactly the mean and the
standard deviation of the Gaussian distribution that characterize
the transformed signal.

Three important considerations will have to be taken into ac-
count in order to construct such a framework. First, we need a
method that can find an estimate of the first moment of a nonCen-
tral Chi distribution from which the datum is drawn. Second, we
need a method that can find an estimate of the first moment of
the Gaussian distribution if an estimate of the first moment of a
nonCentral Chi distribution is provided. Third, we need a method
that can find a noisy Gaussian-distributed signal for each of the
magnitude signals if the first moment of the nonCentral Chi distri-
bution, the first moment and the standard deviation of the Gauss-
ian distribution are provided. Each consideration above constitutes
a separate procedure or stage.

Therefore, it is necessary to have a procedure in the first stage
that can find an ‘‘average value” for each datum. In other words,
the first moment of a nonCentral Chi distribution from which the
datum is drawn is estimated in the first stage. Once an estimate
of the first moment of a nonCentral Chi distribution is known, a
procedure in the second stage must be able to produce the ‘‘aver-
age value” of the underlying signal intensity, which is an estimate
of the first moment of a Gaussian distribution. A procedure in the
third stage must be able to use each original noisy datum, which is
nonCentral Chi-distributed, to find the corresponding transformed
noisy signal that is Gaussian-distributed. The schematic represen-
tation of the three stages of the proposed framework is shown in
Fig. 1A.

Specifically, in the first stage, a data smoothing or fitting meth-
od may be used to obtain the average values of the noisy magni-
tude signals. The data may be fitted with some parametric
functions (single exponentially or bi-exponentially decaying func-
tions) or smoothed with a variety of smoothing methods. Although
a comparison of various fitting or smoothing methods is of interest,
such a comparison, if thoroughly investigated, would take us too
far afield. Here, we use a penalized or smoothing spline model
[25,26] to obtain the ‘‘average values”. The penalized spline model
is chosen for its ease of implementation and use. The degree of
smoothness is selected based on the method of generalized
cross-validation (GCV) [26,27]. Again, other methods may be used
to select the degree of smoothness, see e.g., [28].

In the second stage, we propose an iterative method that takes
in an ‘‘average value” of a noisy magnitude signal as an input and
returns an ‘‘average value” of the underlying signal intensity as an
output. This iterative method is closely related to but different
from our previously proposed fixed point formula of the signal-
to-noise ratio (SNR) because it is a fixed point formula of the
underlying signal intensity, see Fig. 1B. Specifically, the present
iterative method treats the estimations of the underlying signal
intensity and of the Gaussian noise standard deviation (SD) sepa-
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rately rather than simultaneously. The key advantage of such an
approach is that excellent methods are available for estimating
the Gaussian noise SD from a much larger sample [29,30]. Conse-
quently, a more precise estimate of the Gaussian noise SD will re-
sult in a more precise estimate of the underlying signal intensity.

In the third stage, the corresponding noisy Gaussian signal of
each of the noisy magnitude signals is found through a composi-
tion of the inverse cumulative probability function of a Gaussian
random variable and the cumulative probability function of a non-
Central Chi random variable. Both the inverse cumulative probabil-
ity function of a Gaussian random variable and the cumulative
probability function of a nonCentral Chi random variable depend
on the ‘‘average value” of the underlying signal intensity and the
Gaussian noise SD. The third stage is exactly a Gaussian random
number generator if the input data are Rician-distributed.

The statistical properties of the proposed framework is investi-
gated using Monte Carlo simulations. Experimental data is also
used to illustrate the proposed framework.

2. Methods

Since the first stage of the proposed scheme is readily available
[25,26], our focus in this paper will be on the latter stages. For com-
pleteness and notational consistency, we have included a brief dis-
cussion of one-dimensional penalized splines in Appendix A, and of
spherical harmonics splines in Appendix B. These spline models
share the same matrix structure, and therefore, the computation
of this matrix structure is briefly touched on in Appendix C.

2.1. Theoretical preliminary

The probability density function (PDF) and the cumulative dis-
tribution function (CDF) of a nonCentral Chi random variable, m,
are needed, respectively, in the second and third stages of the pro-
posed scheme. It is known that magnitude MR signals obtained
from an N-receiver-coil MRI system follow a nonCentral Chi, ~v, dis-
tribution of 2N degrees of freedom and the corresponding PDF can
be expressed as [16,17]

p~vðmjg;rg;NÞdm ¼ mN

r2
ggN�1 exp �m2 þ g2

2r2
g

 !
IN�1

mg
r2

g

 !
dm;

m P 0 ð1Þ

where the PDF is zero when m < 0, g is the underlying (combined)
signal intensity (also known as the location parameter of the non-
Central Chi distribution), rg is the Gaussian noise standard devia-
tion, and Ik is the kth-order modified Bessel function.

The corresponding (CDF) can be expressed as

P~vðajg;rg;NÞ ¼
Z a

0
p~vðmjg;rg;NÞdm: ð2Þ

In practice, it is more convenient to compute Eq. (2) in terms of ser-
ies representations of the generalized Marcum-Q function [31], QN.
It can be shown that Eq. (2) can be simplified to

P~vðajg;rg;NÞ ¼ 1�
Z 1

a
p~vðmjg;rg;NÞdm

¼ 1� Q Nðg=rg;a=rgÞ; ð3Þ

where the definition of the generalized Marcum-Q function is

Q Nðk; cÞ ¼
1

kN�1

Z 1

c
sN exp � k2 þ s2

2

 !
IN�1ðksÞds: ð4Þ

When the underlying signal is zero, i.e., g = 0, the PDF and the CDF
are given by [30]
p~vðmj0;rg;NÞdm ¼ m2N�1

2N�1r2N
g ðN � 1Þ!

exp � m2

2r2
g

 !
dm; ð5Þ

and

P~vðaj0;rg;NÞdm ¼ 1� 1
ðN � 1Þ! CðN;a

2=ð2r2
gÞÞ; ð6Þ

where the incomplete Gamma function is defined as CðN; xÞ ¼
R1

x

tN�1 expð�tÞdt. The complete Gamma function is C(N,0) and is typ-
ically written simply as C(N).

2.2. Fixed point formula of the underlying signal intensity

The derivation of the fixed point formula of the underlying sig-
nal intensity, g, which is needed in this work, is closely related to
that of the fixed point formula of the signal-to-noise ratio, h �
g/rg, shown in our previous work [16]. The main difference is in

the separation of the underlying signal intensity and the Gaussian
noise SD, rg. This separation is conceptually very important be-
cause the Gaussian noise SD, rg, is held as a fixed constant during
the iterative process of successively estimating g. The key advan-
tage of this approach is that the precision in the estimate of g is
higher than that of our previous approach because the estimate
of rg computed from a much large sample is less variable.

Here, we present the derivation of the fixed point formula of g.
We begin with the first two moments of a nonCentral Chi distribu-
tion, Eq. (1), and they are given by

hmi ¼ rgbN 1F1ð�1=2;N;�g2=ð2r2
gÞÞ; ð7Þ

and

hm2i ¼ g2 þ 2Nr2
g ; ð8Þ

respectively, where bN ¼
ffiffiffiffiffiffiffiffiffi
p=2

p ð2N�1Þ!!
2N�1ðN�1Þ!

, the double factorial is de-
fined as: n!! = n(n � 2)(n � 4) � � � �, and 1F1 is the confluent hyper-
geometric function.

The variance of a nonCentral Chi random variable is defined as

r2
~v � hm2i � hmi2 ¼ nðgjrg;NÞr2

g ; ð9Þ

where the scaling factor, n, is given by

nðgjrg;NÞ ¼ 2N þ g2

r2
g
� bN 1F1ð�1=2;N;�g2=ð2r2

gÞÞ
h i2

: ð10Þ

The fixed point formula of the underlying signal intensity can be ob-
tained by substituting the expression in Eq. (8) into Eq. (9). This
leads to the following expressions

g ¼ gðgjhmi;rg;NÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hmi2 þ nðgjrg;NÞ � 2N

� �
r2

g

q
: ð11Þ

Note that the implementation of the fixed point formula of g, which
is based on Newton’s method of root finding and is described in
Appendix D, has important differences compared to that of the fixed
point formula of h � g/rg[16].

To find the fixed point estimate, denoted by ĝ, in Eq. (11), hmi
and rg are replaced by their corresponding estimates, denoted by
m̂ and r̂g, respectively. In general, m̂ may be taken to be the
smoothed estimate obtained from the smoothing spline and r̂g

may be taken to be the estimated Gaussian noise SD obtained
through various techniques mentioned above [11,29,30,32,33].

In short, the fixed point formula maps m̂ to ĝ. Fixed point for-
mulae are powerful methods of successive approximation because
their convergence can be tested under a very simple and general
assumption [34]. Specifically, let ĝ be the fixed point that satisfies
Eq. (11), i.e., gðĝjm̂; r̂g;NÞ ¼ ĝ, and g0 be the initial approximation,
if both ĝ0 and ĝ belong to an interval in which j dgðgjm̂;r̂g ;NÞ

dg j < 1 for all
g in that interval, then g0 will always converge to ĝ. In the context
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of Eq. (11), the interval does not have to be specified because ĝ is
always less than m̂, and therefore, the iteration with g0 ¼ m̂ as
the initial approximation will always be convergent if m̂ is exactly
at or above the level of the noise floor, i.e., m̂ P bNr̂g. Due to statis-
tical variations; however, m̂ may occasionally be below the noise
floor. If this is the case, then ĝ is set to �ĝd where ĝd is the fixed
point estimate derived from a new estimate of hmi, which is de-
fined by m̂d ¼ bNgrg þ d with d ¼ bNr̂g � m̂. This particular choice
is needed to ensure the symmetry of the resultant distribution of
ĝ at a zero signal-to-noise ratio. Finally, an implementation of
the fixed point formula is provided in Appendix D.

2.3. Mapping nonCentral Chi to Gaussian signals

Mapping a nonCentral Chi random variable, m, to a Gaussian
random variable, x, can be achieved by a composition of the inverse
cumulative distribution function of a Gaussian random variable
and the cumulative probability function of a nonCentral Chi ran-
dom variable, i.e.,

x ¼ P�1
G ðP~vðmjg;rg;NÞjg;rgÞ; ð12Þ

where the inverse cumulative distribution function of a Gaussian
random variable is given by

P�1
G ðyjg;rgÞ ¼ gþ rg

ffiffiffi
2
p

erf�1ð2y� 1Þ: ð13Þ

Note that erf�1 is the inverse of the error function. We should
mention that, in practice, an outlier-rejection step is recommended
in Eq. (12). Specifically, we shall identify x in Eq. (12) as an outlier if
the following inequalities do not hold: ða=2Þ 6 P~vðmjg;rg;NÞ <
1� ða=2Þwhere a may be between 0 and 1 inclusively but it is usu-
ally set to a user-specified value of 0.005, 0.001 or 0.0005.

The method of mapping an arbitrary distribution to a Gaussian
distribution is well known, e.g., [35,36]. In general, however, this
type of mappings is of limited value without a priori knowledge
of both g and rg, except for those that map from a Gaussian-de-
rived distribution to a Gaussian distribution in which g and rg

may be estimated through the proposed technique. Therefore, in
the context of the present work, the parameters, g and rg, in Eq.
(12) are replaced by their corresponding estimates, ĝ and r̂g, which
can be obtained through the techniques discussed in the previous
section and in [30], respectively.
3. Results

The validity of the proposed scheme is analyzed with several
simulation tests.

3.1. NonCentral Chi random samples drawing from the same
distribution

We will begin with the simplest case—that is, the mapping of
noisy nonCentral Chi signals, which are drawn from the same dis-
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Fig. 2. (A) Histogram of 20,000 random signals generated from a
tribution characterized by constant g and rg, to noisy Gaussian sig-
nals. Without loss of generality, we take N to be unity.

This type of data in which samples are drawn from the same dis-
tribution is rare in practice but is useful for illustrating the basic idea
of the mapping between nonCentral Chi and Gaussian distributions.
Note that this type of data is not an ordered sequence, and therefore,
does not require a smoothing spline to estimate the ‘‘average value”.
The sample mean of the data is sufficient in this case.

We should also note that the Gaussian noise SD cannot be esti-
mated from this type of data using the noise variance estimation
techniques discussed in [11,29,30,32,33] because there is no ‘‘back-
ground” in this type of data to estimate noise variance. Fortunately,
other approaches can estimate both the underlying signal intensity
and the Gaussian noise SD. Here, we note two approaches—our
previously proposed analytically exact scheme [16], and the max-
imum likelihood approach as discussed in [37]. One of the notable
differences between these two approaches is that the former is a 1-
D optimization procedure while the latter is a 2-D optimization
procedure.

In this example, we will use the analytically exact scheme [16]
to estimate both the underlying signal intensity and the Gaussian
noise SD. Fig. 2A shows the histogram of 20,000 random samples
that were drawn from a Rician distribution with g = 25 and
rg = 50 (or g/rg = 0.5). The sample mean and the standard devia-
tion of these random samples were 66.727 and 34.729, respec-
tively. The magnitude SNR was 66.727/34.729 = 1.921, which
corresponded to an estimated SNR, ĝ=r̂g, of 0.515. The estimated
underlying signal intensity and the estimated Gaussian noise SD
were found to be ĝ ¼ 25:74 and r̂g ¼ 49:98, respectively.

Based on the estimated values of g and rg, the noisy Rician sam-
ples were then transformed to noisy Gaussian samples through the
third stage of the proposed scheme. The histogram of the trans-
formed signals is shown in Fig. 2B. The sample mean and the stan-
dard deviation of these random transformed samples were 25.72
and 50.01, respectively.

3.2. Medium samples generated from a 1-D exponentially decaying
model with a large number of repeated measurements

In this and the next examples, we investigate the statistical
properties of the proposed scheme with data generated from a
simple exponentially decaying model of the following form, s0e�bD,
taken from diffusion-weighted MRI. The b-value is an experimen-
tally controlled variable that determines the level of diffusion-
weighting, which affects the level of attenuation of the non-diffu-
sion-weighted signal, and D is the unknown diffusion coefficient.

Data generated from an exponentially decaying model are par-
ticularly useful for testing the proposed scheme because each mea-
surement obtained at a different b-value is in fact drawn from a
different distribution. Since there is only one measurement at each
b-value, using the sample mean as the ‘‘average value” at each b-
value would be too variable. Therefore, the ‘‘average value” at each
b-value has to be estimated from a smoothing method such as the
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Rician distribution. (B) Histogram of the transformed signals.
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penalized spline where a collection of measurements at different
b-values is treated as a whole to estimate the ‘‘average values” at
all b-values.

Here, we generated 50,000 sets of 30 measurements (Rician sig-

nals) from the following expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 expð�bDÞ þ e1Þ2 þ e2

2

q
with

s0 = 1000, D = 2.1 � 10�3 mm2/s, and e’s are the Gaussian random
variables with mean zero and standard deviation of 100.

The 30 measurements are sampled uniformly from b-values of
50 s/mm2 to 1993 s/mm2 with a gap of 67 s/mm2. Fig. 3A shows
the sample mean and the sample standard deviation of the
50,000 measurements at each b-value. The error bar denotes one
standard deviation away in both directions from the sample mean.
The blue curves in Fig. 3A and B are the expected value computed
from the first moment of the Rician random variables.

Each set of 30 measurements is analyzed through the proposed
scheme using the penalized spline with truncated polynomial basis
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each b-value represent the sample mean and the sample standard deviation that are ob
sample mean and the sample standard deviation of the spline estimates. (C) The red curve
fixed point estimates. The gray box and the error bar at each b-value represent the samp
transformed signals via the proposed method (D), g’s, shown in Fig. 1B, and via the met
of degree 4 and with 3 knots at {452, 988., 1457} s/mm2. The re-
sults of these 50,000 sets for each stage of the proposed scheme
are shown in Fig. 3B–D. Fig. 3B and C show the sample mean and
the sample standard deviation of the spline estimates and of the
fixed point estimates, respectively. The red curves in Fig. 3C and
D are the ground truth, i.e., s0exp(�bD). Fig. 3D and E show the
sample mean and the sample standard deviation of the trans-
formed signals obtained through the proposed framework and
the method of Gudbjartsson and Patz [19], respectively.

In Fig. 3D, it is clear that the sample mean at each b-value is
close to the ground truth value but the variance (or SD) increases
as the SNR decreases. The increase in SD is mainly due to a lack
of sufficient samples because the ideal or expected behavior is that
the variance should be constant (Fig. 1B). As an example, we com-
pare the result from the above simulation to that of another simu-
lation in which the number of sampling points on the b-value axis
was increased to 98, see Fig. 4. It is clear from Fig. 4 that the Gauss-
250 500 750 1000 1250 1500 1750 2000

200

400

600

800

1000

1200B

250 500 750 1000 1250 1500 1750 2000
-200

200

400

600

800

1000

1200D

b-value (s/mm  )2

b-value (s/mm  )2

S
am

pl
e 

m
ea

n 
of

 

sp
lin

e 
es

tim
at

es

S
am

pl
e 

m
ea

n 
of

 

tr
an

sf
or

m
ed

 s
ig

na
ls

0 1250 1500 1750 2000

/mm  )2

noise SD of 100 units is shown as a blue curve, and the gray box and the error bar at
tained from each column of noisy magnitude signals, m’s, shown in Fig. 1B. (B) The

is the ground truth, and the sample mean and the sample standard deviation of the
le mean and the sample standard deviation that are obtained from each column of
hod of Gudbjartsson and Patz (19) (E).



250 500 750 1000 1250 1500 1750 2000

50

100

150

200

250

300

30-point fit

98-point fit

b-value (s/mm  )2

G
au

ss
ia

n 
no

is
e 

S
D

Fig. 4. The estimated Gaussian noise SD as a function of b-value with two Monte
Carlo runs under the same simulation conditions but with two different sample
sizes—30 and 98.

C.G. Koay et al. / Journal of Magnetic Resonance 197 (2009) 108–119 113
ian noise SD estimates of the 98-point fit are collectively much clo-
ser to the ground truth value of 100 (arbitrary unit) than those of
the 30-point fit.

3.3. Large samples generated from a 1-D exponentially decaying model
without repeated measurements

The same exponentially decaying model in diffusion-weighted
MRI and the same set of parameters, D = 2.1 � 10�3 mm2/s and
the Gaussian noise SD of 100, are used in this example. Here, we
have only one set of 2476 measurements sampled from 50 to
5000 s/mm2 with a gap of 2 s/mm2. The penalized spline with a
truncated polynomial basis of degree 4 and with 5 knots at {872,
1698, 2524, 3348, 4174} s/mm2 was used in this example.

The goal of this example is to show the qualitative features of
the noisy Rician signals and of the transformed signals obtained
through the proposed framework and the method of Gudbjartsson
and Patz [19]. We also compare and contrast the results from the
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Fig. 5. (A) A collection of 2476 noisy magnitude signals sampled from 50 to 5000 s/mm
Gaussian noise SD of 100. (B) The transformed signals obtained through the proposed me
Patz [19]. (D) The noisy Rician signals are fitted with both the mono-exponential and bi-e
the expected value. (E) The transformed signals obtained through the proposed method a
with an arrow. The red curve is the ground truth. (F) The transformed signals obtained
exponential and bi-exponential models and the results are indicated in the panel above
parametric fits (mono-exponential and bi-exponential fits) to both
the noisy signals and the transformed signals.

Fig. 5A shows the noisy Rician signals. Fig. 5B and C show the
transformed signals obtained through the proposed framework
and the method of Gudbjartsson and Patz [19], respectively. The
results of both a mono-exponential fit and a bi-exponential fit to
the noisy Rician signals are shown in Fig. 5D. It is interesting to
note that a bi-exponential model fits the noisy Rician signals rather
well—the bi-exponential model is almost superimposed upon the
expected curve. Fig. 5E shows the result of a mono-exponential
fit to the transformed signals obtained through the proposed
framework; the resultant curve is close to the ground truth. The re-
sults of both a mono-exponential fit and a bi-exponential fit to the
transformed signals obtained through the method of Gudbjartsson
and Patz [19] are shown in Fig. 5F. The estimates of the parameters,
(s0, D), obtained through a mono-exponential fit of the noisy Rician
signals, the transformed signals based on the proposed framework,
and the corrected signals based on the method of Gudbjartsson and
Patz [19] were found to be (597.4, 7.3 � 10�4 mm2/s), (966.4,
2.0 � 10�3 mm2/s), and (774.3, 1.3 � 10�3 mm2/s), respectively. In
the bi-exponential fit of the noisy Rician signals and of the cor-
rected signals based on the method of Gudbjartsson and Patz
[19], we found (ŝ0 ¼ 1036:5, D̂1 ¼ �1:8� 10�5 mm2/s, D̂2 ¼ 2:7�
10�3 mm2/s, 0.11) and (ŝ0 ¼ 1040:9, D̂1 ¼ �3:0� 10�5 mm2/s,
D̂2 ¼ 2:7� 10�3 mm2/s, 0.087), respectively. Note that the last item
in each of the lists above is the (volume) fraction associated
with D̂1.

3.4. Medium samples generated from a 3-D exponentially decaying
model with a large number of repeated measurements

In this example, we will illustrate the proposed scheme with
data sampled on a unit sphere. The spherical harmonic spline mod-
el will be used to transform the nonCentral Chi signals to Gaussian
signals. A brief introduction to the spherical spline is provided in
Appendix B.
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2 with a gap of 2 s/mm2. These noisy Rician signals are generated with a known
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re fitted with a mono-exponential model and the resulting curve is indicated above
through the method of Gudbjartsson and Patz [19] are fitted with both the mono-
. The red curve is the ground truth.
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For simplicity, the noisy Rician signals will be generated from a
single tensor model according to the following expression,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 expð�bgT DgÞ þ e1Þ2 þ e2

2

q
where s0 = 1000, D is the diffusion

tensor, g is a unit gradient vector, T denotes matrix or vector trans-
position, and e’s are the Gaussian random variables with mean zero
and SD of 100. Further, the synthetic tensor is given by

D ¼
9:5 1:1 �1:6
1:1 6:7 �0:5
�1:6 �0:5 4:8

0B@
1CA� 10�4 mm2=s:
Fig. 6. (A) The underlying signal intensity from a single tensor model as a function o
expected value of the Rician signals (with the known Gaussian noise SD of 100) as a functi
coordinates of all the unit gradient vectors. (D) The color-coded dots are those shown
corresponding expected value (first moment of the Rician distribution with a Gaussian
triangles, and the transparent box and the error bar at each b-value represent the samp
noisy magnitude signals, m’s, shown in Fig. 1B. The transparent box and the error bar at e
obtained from each column of transformed signals, g’s, via the proposed method (F), as sh
transformed signals in this case shares the same spherical coordinates. The color-coded
For visualization purposes, we first parametrize the unit gradi-
ent vector in terms of spherical coordinates, i.e., g ¼ ½sinðhÞ cosð/Þ;
sinðhÞ sinð/Þ; cosðhÞ�T . With this parametrization, we can plot the
underlying signal intensity and the expected value of the Rician
random variables as functions of the spherical coordinates.
Fig. 6A shows the underlying signal intensity as a function of the
spherical coordinates at a b-value of 3000 s/mm2, and Fig. 6B is
the corresponding expected value in magnitude obtained from
the known Gaussian noise SD of 100.

As with the one-dimensional case, we chose 30 unit gradient
vectors that are uniformly distributed on the sphere (based on
f spherical coordinates evaluated with a constant b-value of 3000 s/mm2. (B) The
on of spherical coordinates. (C) The contour plot of (A) and the color-coded spherical

in (C), arranged in an ascending order of signal intensity. The blue dots are the
noise SD of 100). (E) Those expected values shown in (D) are shown here as blue

le mean and the sample standard deviation that are obtained from each column of
ach b-value represent the sample mean and the sample standard deviation that are

own in Fig. 1B, and via the method of Gudbjartsson and Patz [19] (G). Each column of
dots are the ground truth values and are those shown in (C) and (D).
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the electrostatic repulsion scheme [38]), and the spherical coordi-
nates of each of the gradient vectors are color-coded in Fig. 6C.
Fig. 6D shows the color-coded underlying signal intensity in
ascending order and their respective expected values (the first mo-
ment of the Rician random variables) with a Gaussian noise SD of
100. There are 50,000 sets of 30 measurements and each measure-
ment in the set is a sample on the unit sphere obtained through
one of the gradient vectors. The sample mean and the sample SD
of the noisy Rician signals of all the spherical coordinates are
shown in Fig. 6E. Finally, each set of measurements is analyzed
through both the proposed scheme using the spherical spline with
spherical harmonics of even degree up to l = 6 and the method of
Gudbjartsson and Patz. The results are shown in Fig. 6F and G,
respectively.

It is clear from the results shown in Fig. 6F that the sample
means are close to the ground truth values but the variance in-
creases slightly as the SNR decreases. The increase in variance is
to be expected since only 30 gradient directions are used. More
importantly, we can expect the variance to get closer to a constant
value that is independent of the SNR level as the size of the sam-
ples becomes larger.
3.5. Illustration using experimental data

We illustrate the performance of our approach on an excised rat
hippocampus data set. The data set contains a series of diffusion-
weighted images obtained by varying the diffusion gradient
strength. The rat was perfusion-fixed with 4% paraformaldehyde
in phosphate buffered-saline (PBS), the hippocampus was dis-
sected and kept in fixative for more than 8 days. Prior to imaging,
the sample was washed overnight in PBS. The imaging was per-
formed using a 14.1T narrow-bore spectrometer where a pulsed
gradient stimulated echo pulse sequence was employed. The imag-
ing parameters were: TE = 12.6 ms, TR = 1000 ms, resolu-
tion = (78 � 78 � 500) lm3, matrix size = (64 � 64 � 3), number
of repetitions = 4, diffusion gradient pulse duration (d) = 2 ms,
and diffusion gradient separation (D) = 24.54 ms. The data set con-
tains a total of 33 images with different diffusion gradient
strengths increasing from 0 to 2935 mT/m in steps of 91.75
mT/m. One diffusion-weighted image is shown in Fig. 7A.
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Fig. 7. Experimental data. (A) A diffusion-weighted image of a hippocampus with a red sq
of each pixel (with different b-values) are analyzed using the proposed method. The result
magnitude signals. Further, each of the blue curves is a smoothed curve obtained through
is a smoothed curve obtained through a bi-exponential fitting to the transformed noisy
that each of the red curves is a ground truth curve, the expected value (or the first momen
dark gray.
Four neighboring pixels indicated with a red square were se-
lected for further analyses. The noisy magnitude signals and the
noisy transformed signals of each of the pixels as a function of b-va-
lue are shown in Fig. 7B–E as blue and red dots, respectively. The
blue curve in each of the panels is obtained through a least squares
fit of a bi-exponential function to the noisy magnitude signals. The
red curve in each of the panels is obtained through a least squares fit
of a bi-exponential function to the noisy transformed signals pro-
duced by the proposed framework. Note that the penalized spline
with a truncated polynomial basis of degree 4 and with 4 knots
was used in this example. The estimated Gaussian noise standard
deviation was 0.88. Further, the estimated parameters obtained
from a least squares fit of a bi-exponential function to both the noisy
magnitude signals and noisy transformed signals are shown below:
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Fig. 7B
 62.48
 0.82
 5.3
 0.027

Fig. 7C
 63.10
 2.0
 6.2
 0.037

Fig. 7D
 64.28
 0.81
 6.0
 0.026

Fig. 7E
 64.36
 1.4
 5.5
 0.027

Bi-exponential fit to

the noisy
transformed
signals
Fig. 7B
 62.6
 9.0
 5.5
 0.060

Fig. 7C
 63.3
 10.9
 6.6
 0.077

Fig. 7D
 64.4
 11.3
 6.2
 0.056

Fig. 7E
 64.4
 9.9
 5.7
 0.048
If both the estimated Gaussian noise SD and each of the red
curves are assumed to be the ground truth values then the ex-
pected value (or the first moment) of a Rician distribution as a
function of b-value can be computed and is shown in dark gray;
these expected values are in good agreement with the blue curve,
which is an indication that the red curve is a good approximation
of the underlying signal intensities.
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4. Discussion

In this work, our main objective is to demonstrate that nonCen-
tral Chi signals can be transformed into Gaussian signals and pres-
ent as clearly as possible the basic ideas as well as the nuts and
bolts of the proposed scheme.

This paper can be thought of as a sequel to, but independent of,
our recent paper on the probabilistic and self-consistent approach
to the identification and estimation of noise (PIESNO) [30] because
the noise estimate on which the proposed framework depends can
be estimated through other techniques. The fixed point formula of
the underlying signal intensity and the technique proposed in [30]
represent our major attempt to decouple the fixed point formula of
SNR [16] into two self-consistent approaches for estimating the
underlying signal and the Gaussian noise SD.

The advantage of this decoupling is substantial because the esti-
mation of the Gaussian noise SD can be obtained from a much lar-
ger collection of samples [30]. As a consequence, the precision of
the Gaussian noise SD estimate will be significantly increased,
and in turn, the precision of the underlying signal intensity esti-
mate will also be increased. As discussed above, the decoupling
is more useful and practical than the fixed point formula of SNR be-
cause we do not usually have many data that are drawn from the
same distribution, Fig. 1B. It is interesting to note that the way in
which the present scheme is realized is due in part to this practical
constraint.

The combination of these stages presented here is, to the best of
our knowledge, unique and novel. Moreover, the formulation of the
second stage is conceptually very different from our previous ap-
proach [16], see Fig. 1B.

The first and third stages of the proposed scheme are well
known but these stages, alone or together, are not sufficient for
mapping nonCentral Chi signals to Gaussian signals without the
second stage. The three stages used in the proposed scheme in a
sense form an irreducible set of steps that is necessary to map
noisy nonCentral Chi signals to noisy Gaussian signals. While dif-
ferent fitting or smoothing methods may be used in the first stage,
the last two stages are strictly mathematical and fixed even though
there are several different iteration schemes for finding the fixed
point of the underlying signal intensity, see Appendix D.

In the second stage, we should point out that the suggested
modification to the fixed point formula of the underlying signal
intensity for the special case in which the ‘‘average value” of the
magnitude signals is below the noise floor can be further improved.
Although we have provided a theoretical justification for this mod-
ification, we believe further studies are needed to investigate other
approaches to find the fixed point estimate for this particular
situation.

The examples illustrated above clearly show the feasibility and
effectiveness of the proposed scheme in mapping noisy magnitude
signals to noisy signal intensities. The proposed scheme can be ex-
tended to transforming any Gaussian-derived noisy signals, e.g.,
Rayleigh, Rician, nonCentral Chi, and nonCentral Chi-squared dis-
tributed signals, to noisy Gaussian signals by finding the specific
fixed point formula used in the second stage.

The basic idea of our approach is general and can be easily
adapted to many MRI and non-MRI applications, e.g., the Laser
Interferometric Gravitational Wave Observatory (LIGO) [39,40]
and communication systems [31], by selecting an appropriate data
smoothing method that is optimal for the application-specific sam-
pling space. For example, the penalized spline model or the wave-
let smoothing spline may be useful in the analysis of functional
MRI data while spherical splines are particularly useful to diffusion
tensor imaging and high angular diffusion imaging techniques [3–
9,21]. We should also point out that some algorithms of least
squares estimation may need to be modified in order to handle
negative values in the transformed data. For example, the nonneg-
ative least squares approach, e.g., [41], may be needed to analyze
the transformed signals.

Spline models are known for their flexibility in capturing un-
known trends in the data but they come at the cost of slightly high-
er susceptibility to noise such as spurious oscillatory trends in the
spline estimates. Therefore, optimal performance cannot be ex-
pected of any spline or regression models when the number of
samples is very small, and simulation studies may be needed to
get an initial assessment of the number of samples needed for a
particular experimental design. In this work, the GCV function
was used as a smoothing criterion because it has several desirable
properties, the most notable of which is that as the number of sam-
ples increases, the spline estimate obtained via the GCV becomes
closer to the estimate that is obtained by minimizing the mean
square error between the estimate and the unknown ground truth
[27]. Finally, the spurious trends in the spline estimates mentioned
above can be partially removed if the transformed signals are fitted
with some parametric functions based on an a priori physical or
mathematical model that is less flexible than the smoothing spline,
e.g. mono-, bi- or tri-exponential functions for the one-dimen-
sional diffusion data or the diffusion tensor model for the three-
dimensional diffusion data.

In quantitative MRI, anatomically or physiologically relevant
parameters are usually estimated from a least squares model. As
noted in the introduction, the Gaussian-distributed noisy signals
are of interest here rather than the Gaussian-derived random sig-
nals because the Gaussian-distributed noisy signals are generally
more amenable to statistical treatment based on the principle of
least squares, e.g., [42–44]. It is important to point out that one
of the basic assumptions in a least squares model is that random
errors follow a Gaussian distribution. The principle of least squares
is very powerful because of its mathematical tractability not only
in parameter estimation but also in hypothesis testing and confi-
dence interval estimation. Further, the least squares and maximum
likelihood estimators are equivalent under the assumption of nor-
mality of random errors [45].

In this work, we have presented a novel approach for transform-
ing noisy nonCentral Chi signals to noisy Gaussian signals, thus
making least squares approaches uniformly applicable for analyz-
ing MRI data. The present approach is a major advance in facilitat-
ing and improving all subsequent data analysis and processing
steps in a quantitative MRI pipeline.
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Appendix A. Penalized spline

A penalized spline function with a truncated polynomial basis
[25] of degree p and K knots at {j1, . . . ,jK} is given by

f ðxÞ ¼ b0 þ
Xp

i¼1

bix
i þ
XK

j¼1

bpjðx� jjÞpþ; ðA:1Þ
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where the operation, (x)+, returns x if x > 0, and zero otherwise,
ðx� jjÞpþ are the spline basis functions and jj are the knots.

If there are n observations, {y1, . . . ,yn}, sampled at {x1, . . . ,xn},
then Eq. (A.1) can be expressed in matrix notation as follows:

y ¼ Xb; ðA:2Þ

where the design matrix, X, is given by:

1 x1 � � � xp
1 ðx1 � j1Þpþ � � � ðx1 � jKÞpþ

..

. ..
. . .

. ..
. ..

. . .
. ..

.

1 xn � � � xp
n ðxn � j1Þpþ � � � ðxn � jKÞpþ

0BB@
1CCA: ðA:3Þ

In practice, we usually normalize the coordinates, {x1, . . ., xn}, by
the maximum of the absolute value of the elements in {x1, . . ., xn}
to avoid numerical instability associated with the QR decomposi-
tion of X. Therefore, the construction of X is based on the normal-
ized coordinates, and so are the knots. Therefore, the knots
reported in Section 3 have to be scaled accordingly.

In the ordinary least squares estimation, the goal is to find b

that minimizes ky � Xbk2 while, in the penalized spline estimation,
the goal is to find b that minimizes

y � Xbk k2 þ kbTDb; ðA:4Þ

where T denotes matrix or vector transposition, D is a diagonal ma-
trix whose first p + 1 diagonal elements are zero and the rest of the
diagonal elements are unity and k is the penalty parameter (or the
smoothing parameter). The smoothed observation vector, ŷk, esti-
mated from the penalized spline can be expressed as follows:

ŷk ¼ Sky; ðA:5Þ

where

Sk ¼ XðXTXþ kDÞ�1XT ðA:6Þ

is known as the smoother matrix.
The procedure presented thus far does not provide a means to

find an optimal k. Here, we use the GCV function [27] to select
an optimal k, which will be denoted by kGCV; note that kGCV is a
minimizer of the GCV function and the GCV function is given by

GCVðkÞ ¼ RSSðkÞ=ð1� trðSkÞ=nÞ2; ðA:7Þ

where RSSðkÞ ¼ y � ŷkk k2 is the residual sum of squares, tr denotes
the matrix trace operation, and n is the number of observations. For
a numerically stable implementation of the penalized spline esti-
mation, see Appendix C.

Appendix B. Spherical spline

According to the expansion theorem of the spherical harmonics
[46], any continuous function, f(h,/), on the unit sphere together
with continuous derivatives up to second order can be expanded
in terms of the Laplace series of the spherical harmonics

f ðh;/Þ ¼
X1
l¼0

Xl

m¼�l

bm
l Ym

l ðh;/Þ ðB:1Þ

where Ym
l ðh;/Þ is the spherical harmonic of lth degree and of mth

order. The spherical harmonic can be expressed as a real rather than
complex function, and this is given by [9,46]

Ym
l ðh;/Þ ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1
2p

ðlþmÞ!
ðl�mÞ!

q
sinðm/ÞP�m

l ðcosðhÞÞ : �l 6 m 6 �1ffiffiffiffiffiffiffi
2lþ1
4p

q
Pm

l ðcosðhÞÞ : m ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1
2p

ðl�mÞ!
ðlþmÞ!

q
cosðm/ÞPm

l ðcosðhÞÞ : 1 6 m 6 l

8>>>><>>>>: :
Note that Pm
l is the associated Legendre polynomial of mth order,

and the arguments of the spherical harmonic function are defined
within these intervals: 0 6 h < p and 0 6 / < 2p.

The smoothing spherical spline [9,26] is built on the Laplace
series with a finite number of terms as well as on the following lin-
ear matrix structure

y ¼ Xb; ðB:2Þ

where y is an array of measurements sampled at {(h1,
/1), . . . ,(hn,/n)}, and the design matrix, X, is made up of the spher-
ical harmonics up to some maximum degree, lmax, and in a specific
order that corresponds exactly to how the coefficients of the Laplace
series are ordered in b, e.g.,

b ¼ ½b0
0; b

�1
1 ;b0

1;b
1
1;b

�2
2 ; . . . ;b2

2; � � � ; b
lmax
lmax
�T: ðB:3Þ

The goal in the smoothing spherical spline estimation [9,26] is to
find b that minimizes

y � Xbk k2 þ kbTDb; ðB:4Þ

where D is a diagonal matrix with each diagonal element taking on
the value of l2(l + 1)2 where l is the degree associated with the cor-
responding element, bm

l , in b.
The solution of the above estimation has the same matrix struc-

ture as that of the penalized spline estimation in Appendix A. Note
that in diffusion MRI, only spherical harmonics of even degree are
of interest because of the assumption that the diffusion process has
antipodal symmetry. Therefore, Eq. (B.3) has to be modified
accordingly.

Appendix C. A common computational method for the
penalized and spherical splines

The key computational problem in penalized spline estimation
is to find an efficient matrix decomposition of the smoother matrix

Sk ¼ XðXTXþ kDÞ�1XT: ðC:1Þ

Our approach in computing the smoother matrix is slightly different
from that of [25] in that we use the QR decomposition to factor X
rather than the Cholesky decomposition to factor XTX.

Let the QR decomposition of X be Q R where Q is an orthogonal
matrix, i.e., QTQ = I, and R is an upper triangular matrix. Note that I
is the identity matrix. Substituting QR into Eq. (C.1), we have

Sk ¼ QRðRTR þ kDÞ�1RTQ T

¼ Q ðIþ kR�TDR�1Þ�1Q T: ðC:2Þ

At this stage, the singular value decomposition (SVD) of
R � R�TDR�1 is needed, which will be denoted by R � UDVT. Note
that D is a diagonal matrix and its diagonal elements are the singu-
lar values of R. Further note that U = V because R is a symmetric
matrix. Finally, the smoother matrix is given by

Sk ¼ QUðIþ kDÞ�1ðQUÞT;
¼MWMT: ðC:3Þ

where M = QU is an orthogonal matrix and W is a diagonal matrix
and its diagonal elements are defined by Wii ¼ 1

1þkDii
. Since M is an

orthogonal matrix, tr(Sk) is simply trðWÞ ¼
P

i
1

1þkDii
. In practice,

the factor M may be precomputed and only the diagonal matrix
W needs to be updated during the optimization search for kGCV.

Appendix D. An implementation of the fixed point formula of
the underlying signal intensity

In this appendix, we provide an implementation of the fixed
point formula of the underlying signal intensity, which is based



Table 1
The algorithm for finding the fixed point estimate of the underlying signal intensity

The input variables are m̂, r̂g , and N, and the output variable is ĝ

1: Procedure FixedPointFinderðm̂; r̂g;NÞ
2:
3: counter = 500
4: eps = 1.0 � 10

�9

5: delta ¼ bNr̂g � m̂
6:
8: if (delta==0) {return 0}
9:
10: if ðdelta > 0Þ fm ¼ bNr̂g þ deltag
11: else fm ¼ m̂g
12:
13: t0 = m
14: t1 ¼ Kðt0 j m; r̂g;NÞ
15: while(jt0-t1j > eps){
16: t0 = t1
17: t1 ¼ Kðt0 j m; r̂g;NÞ
18: counter = counter-1
19: if(counter==0) break
20:}
21:
22: if (delta > 0) {return -t1}
23: else {return t1}
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on Newton’s method of root finding. It begins with an iteration
scheme of the following form

gkþ1 � Kðgkjm̂; r̂g;NÞ ¼ gk �
f ðgkjm̂; r̂g;NÞ
f 0ðgkjm̂; r̂g;NÞ

; ðD:1Þ

where f ðgjm̂; r̂g;NÞ ¼ gðgjm̂; r̂g ;NÞ � g, f 0 denotes the first order
derivative of f with respect to g, and g is defined in Eq. (11). The
function, K(gjm,r,N), can be further simplified to the following
expression:

g

� gðgjm;r;NÞ gðgjm;r;NÞ � gð Þ
g 1� b2

N
2N 1F1ð� 1

2 ;N;�
g2

2r2Þ1F1ð12 ;N þ 1;� g2

2r2Þ
� �

� gðgjm;r;NÞ
:

ðD:2Þ

The basic algorithm of the above iteration is given in Table 1. It is
clear from Eq. (D.2) that the expression is different from that of [16].

We should note that there are other iteration schemes for find-
ing the fixed point of the underlying signal. Here, we provide an-
other iteration scheme also based on Newton’s method

gþ
2Nr m� bNr1F1 � 1

2 ;N;�
g2

2r2

� �� �
bNg1F1ð12 ;N þ 1;� g2

2r2Þ
: ðD:3Þ

The expression above is derived directly from Eq. (7). Note that
Table 1 can be easily adapted for Eq. (D.3) instead of Eq. (D.2).
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